

CREPE: A Convolutional Representation for Pitch Estimation

April 19, 2018 ICASSP 2018 Lecture Session AASP-L4.3: Music Signal Analysis and Processing

Jong Wook Kim, Justin Salamon, Peter Li, Juan Pablo Bello Music and Audio Research Laboratory, New York University

Task: Monophonic Pitch Estimation

• Estimating the fundamental frequency of a monophonic sound recording.

- A long-standing topic in audio signal processing research
- A fundamental problem in understanding music and audio, with many aplications
 - A core component of melody extraction systems^[1]
 - A method to generate pitch annotations in multi-track datasets^[2]
 - Analyzing prosodic aspects such as intonations for speech analysis
- Juan Bosch and Emilia Gómez, "Melody extraction in symphonic classical music: a comparative study of mutual agreement between humans and algorithms," in Proceedings of the 9th Conference on Interdisciplinary Musicology (CIM14), 2014.

Background on Monophonic Pitch Estimation

A History of Heuristic Engineering Feature Extractor Functions

- Frequency-domain methods
 - Cepstrum^[1]: IFT of log magnitude spectrum, SWIPE^[2]: spectrum template matching
- Time-domain methods
 - $f_{ACF}(\tau) = \sum x_t x_{t+\tau}$, $f_{AMDF}(\tau) = \sum |x_t x_{t_\tau}|$, $f_{DF}(\tau) = \sum (x_t x_{t+\tau})^2$
 - YIN^[3]: cumulative mean normalized difference function, $f_{YIN}(\tau) = f_{DF}(\tau) / \sum_{i=1}^{\tau} f_{DF}(j)$
 - pYIN^[4]: an extension to YIN based on probabilistic inference over YIN's threshold
- Claim: hand-crafted feature extractors did not solve the problem
 - Reported accuracies of existing algorithms near 100% are based on simplistic datasets
 - They still perform less than ideal in a dataset with diverse timbres, etc.
 - Should be able to benefit from data-driven methods, just like the other MIR tasks
- [1] A Michael Noll, "Cepstrum pitch determination," The journal of ASA, vol. 41, no. 2, 1967.
- [2] Arturo Camacho and John G Harris, "A sawtooth waveform inspired pitch estimator for speech and music," The Journal of ASA, vol. 124, no. 3, 2008
- [3] Alain de Cheveigné and Hideki Kawahara, "YIN, a fundamental frequency estimator for speech and music," The Journal of ASA, vol. 111, no. 4, 2002.
- [4] Matthias Mauch and Simon Dixon, "pYIN: A fundamental frequency estimator using probabilistic threshold distributions," in Proceedings of ICASSP, 2014.

Deep Model Architecture

Layers	Filters	Kernel	Output	Note
Input			1024	normalized audio segment
Conv1D & MaxPool1D	1024	512	(128, 1024)	strides=4 in Conv1D
Conv1D & MaxPool1D	128	64	(64, 64)	
Conv1D & MaxPool1D	128	64	(32, 64)	
Conv1D & MaxPool1D	128	64	(16, 64)	
Conv1D & MaxPool1D	256	64	(8, 64)	
Conv1D & MaxPool1D	512	64	(4, 512)	
Flatten & Dense	360		360	the pitch salience vector

- Input is a 1024-sample segment from 16 kHz recording (64 milliseconds)
- Each conv layer is followed by a batch normalization and a dropout of p = 0.25
- Using padding="same" and pool_size=2 everywhere

Prediction Target: The Pitch Salience Representation

- The 360-dimensional output predicts the presence of pitch, inspired by [1]
 - Covers 6 octaves of notes, between C1 (32.7 Hz) and B6 (1975.5 Hz)
 - Gaussian curve centered at true pitch, with a stdev of 25 cents, as the ground-truth:

- Estimated pitch is then given as the (local) weighted average of the weights
- Optimization target: minimize the binary cross entropy:

$$\mathcal{L}(\mathbf{y}, \widehat{\mathbf{y}}) = \sum_{i=1}^{360} \left(-y_i \log \widehat{y}_i - (1 - y_i) \log(1 - \widehat{y}_i) \right)$$

- Joint training of 360 binary classifiers, each detecting presence of certain pitch

Datasets and Evaluation

- For objective evaluation, we need a dataset with perfect pitch annotations
 - The only way to obtain such dataset is to synthesize data from known pitch curves
- The datasets:
 - **RWC-synth**: 6.16h of timbrally homogeneous audio, what pYIN^[1] used for evaluation
 - MDB-stem-Synth: 15.36h of audio of 25 instruments, resynthesized from MedleyDB^[2]
- 5-fold cross validation and artist-conditional splits
 - We report 5-fold cross-validation accuracies, with 60/20/20 train/validation/test split
 - Tracks from one artists have go to the same folds, to avoid cheating
- Reporting the following evaluation metrics, using mir_eval^[3]:
 - Raw Pitch Accuracy (RPA): proportion of frames for which pitch estimation is correct
 - Raw Chroma Accuracy (RCA): same as above but for chroma, allowing octave errors

[3] Colin Raffel et al. "mir_eval: A transparent implementation of common mir metrics," in Proceedings of ISMIR, 2014.

^[1] Matthias Mauch and Simon Dixon, "pYIN: A fundamental frequency estimator using probabilistic threshold distributions," in Proceedings of ICASSP, 2014.

^[2] Rachel M Bittner et al. "Medleydb: A multitrack dataset for annotation-intensive mir research," in Proceedings of ISMIR, 2014.

Results: Pitch and Chroma Accuracy

Dataset	Metric	CREPE	pYIN	SWIPE
RWC-synth	RPA	0.999 ± 0.002	0.990 ± 0.006	0.963 ± 0.023
	RCA	0.999 ± 0.002	0.990 ± 0.006	0.966 ± 0.020
MDB-stem-synth	RPA	0.967 ± 0.091	0.919 ± 0.129	0.925 ± 0.116
	RCA	0.970 ± 0.084	0.936 ± 0.092	0.936 ± 0.100

Dataset	Threshold	CREPE	pYIN	SWIPE
RWC-synth	50 cents	0.999 ± 0.002	0.990 ± 0.006	0.963 ± 0.023
	25 cents	0.999 ± 0.003	0.972 ± 0.012	0.949 ± 0.026
	10 cents	0.995 ± 0.004	0.908 ± 0.032	0.833 ± 0.055
MDB-stem-synth	50 cents	0.967 ± 0.091	0.919 ± 0.129	0.925 ± 0.116
	25 cents	0.953 ± 0.103	0.890 ± 0.134	0.897 ± 0.127
	10 cents	0.909 ± 0.126	0.826 ± 0.150	0.816 ± 0.165

Results: Noise Robustness

- Evaluated on degraded audio using Audio Degradation Toolbox^[1] (ADT)
- CREPE performs well under various types of additive noise
 - except brown noise, for which pYIN performed better

[1] Matthias Mauch and Sebastian Ewert, "The audio degradation toolbox and its application to robustness evaluation," in Proceedings of ISMIR, 2013.

Results: First-Layer Filters

- The first-layer filters adapts to the timbre and the pitch distribution of the training dataset.
- When trained on a dataset with highly homogeneous timbre, the weights learn to differentiate the harmonics, rather than the FO.

On the Generalizability of the Model

- Pitch accuracies are correlated with the instruments and their frequency (→)
- Like any data-driven models, it only learns what it saw during training.
- Despite the artist-conditional splits, a model trained on one dataset doesn't tend to perform as well on other datasets.
- To make a general-purpose pitch estimator, it needs to be trained on a variety of datasets.

Try It!

- Python tool for running a pre-trained model: https://github.com/marl/crepe/
 - To install and run:
 - \$ pip install crepe # installs the CREPE package
 - \$ crepe track.wav # run pitch estimation on track.wav
- The script above produces:
 - a CSV file with estimated pitch and voicing confidence
 - a salience plot in a PNG file, and optionally as a Numpy format
- Trained on 6 different datasets to ensure generalizability
- An interactive demo: https://marl.github.io/crepe/

Conclusions and Future Work

- Presented a data-driven neural network model as a state of the art method
 - Runs directly on time-domain audio signal
 - Robust with heterogeneous timbre and additive noise
 - Stays highly accurate, even with 10 cents threshold
- Possible extensions to the model:
 - Temporal tracking of pitch curves
 - Data augmentation with:
 - » pitch/phase shifts
 - » various kinds of additive noise
 - Learnable pre-processing filter