
CREPE:
A Convolutional Representation for Pitch Estimation

April 19, 2018
ICASSP 2018 Lecture Session AASP-L4.3: Music Signal Analysis and Processing

Jong Wook Kim, Justin Salamon, Peter Li, Juan Pablo Bello
Music and Audio Research Laboratory, New York University

Task: Monophonic Pitch Estimation

• Estimating the fundamental frequency of a monophonic sound recording.

→

...
9.010000,216.598864,0.733938
9.020000,219.406638,0.859176
...

• A long-standing topic in audio signal processing research
• A fundamental problem in understanding music and audio, with many aplications

– A core component of melody extraction systems[1]

– A method to generate pitch annotations in multi-track datasets[2]

– Analyzing prosodic aspects such as intonations for speech analysis

[1] Juan Bosch and Emilia Gómez, “Melody extraction in symphonic classical music: a comparative study of mutual agreement between humans and
algorithms,” in Proceedings of the 9th Conference on Interdisciplinary Musicology (CIM14), 2014.

[2] Justin Salamon et al. “An analysis/synthesis framework for automatic f0 annotation ofmultitrackdatasets,” in Proceedings of ISMIR, 2017.
1/11

Background on Monophonic Pitch Estimation
A History of Heuristic Engineering Feature Extractor Functions

• Frequency-domain methods
– Cepstrum[1]: IFT of log magnitude spectrum, SWIPE[2]: spectrum template matching

• Time-domain methods
– fACF(τ) =

∑
xtxt+τ, fAMDF(τ) =

∑
|xt − xtτ |, fDF(τ) =

∑
(xt − xt+τ)

2

– YIN[3]: cumulative mean normalized difference function, fYIN(τ) = fDF(τ)
⧸︀∑τ

j=1 fDF(j)
– pYIN[4]: an extension to YIN based on probabilistic inference over YIN’s threshold

• Claim: hand-crafted feature extractors did not solve the problem
– Reported accuracies of existing algorithms near 100% are based on simplistic datasets
– They still perform less than ideal in a dataset with diverse timbres, etc.
– Should be able to benefit from data-driven methods, just like the other MIR tasks

[1] A Michael Noll, “Cepstrum pitch determination,” The journal of ASA, vol. 41, no. 2, 1967.
[2] Arturo Camacho and John G Harris, “A sawtooth waveform inspired pitch estimator for speech and music,” The Journal of ASA, vol. 124, no. 3, 2008
[3] Alain de Cheveigné and Hideki Kawahara, “YIN, a fundamental frequency estimator for speech and music,” The Journal of ASA, vol. 111, no. 4, 2002.
[4] Matthias Mauch and Simon Dixon, “pYIN: A fundamental frequency estimator using probabilistic threshold distributions,” in Proceedings of ICASSP, 2014.

2/11

Deep Model Architecture

Layers Filters Kernel Output Note

Input 1024 normalized audio segment
Conv1D & MaxPool1D 1024 512 (128, 1024) strides=4 in Conv1D
Conv1D & MaxPool1D 128 64 (64, 64)
Conv1D & MaxPool1D 128 64 (32, 64)
Conv1D & MaxPool1D 128 64 (16, 64)
Conv1D & MaxPool1D 256 64 (8, 64)
Conv1D & MaxPool1D 512 64 (4, 512)

Flatten & Dense 360 360 the pitch salience vector

• Input is a 1024-sample segment from 16 kHz recording (64 milliseconds)
• Each conv layer is followed by a batch normalization and a dropout of p = 0.25
• Using padding="same" and pool_size=2 everywhere 3/11

Prediction Target: The Pitch Salience Representation

• The 360-dimensional output predicts the presence of pitch, inspired by [1]
– Covers 6 octaves of notes, between C1 (32.7 Hz) and B6 (1975.5 Hz)
– Gaussian curve centered at true pitch, with a stdev of 25 cents, as the ground-truth:

C1 B6

• Estimated pitch is then given as the (local) weighted average of the weights
• Optimization target: minimize the binary cross entropy:

L (y, ŷ) =
∑360

i=1
(−yi log ŷi − (1− yi) log(1− ŷi))

– Joint training of 360 binary classifiers, each detecting presence of certain pitch
[1] Rachel M Bittner et al. “Deep salience representations for f0 tracking in polyphonic music,” in Proceedings of ISMIR, 2017.

4/11

Datasets and Evaluation

• For objective evaluation, we need a dataset with perfect pitch annotations
– The only way to obtain such dataset is to synthesize data from known pitch curves

• The datasets:
– RWC-synth: 6.16h of timbrally homogeneous audio, what pYIN[1] used for evaluation
– MDB-stem-Synth: 15.36h of audio of 25 instruments, resynthesized from MedleyDB[2]

• 5-fold cross validation and artist-conditional splits
– We report 5-fold cross-validation accuracies, with 60/20/20 train/validation/test split
– Tracks from one artists have go to the same folds, to avoid cheating

• Reporting the following evaluation metrics, using mir_eval[3]:
– Raw Pitch Accuracy (RPA): proportion of frames for which pitch estimation is correct
– Raw Chroma Accuracy (RCA): same as above but for chroma, allowing octave errors

[1] Matthias Mauch and Simon Dixon, “pYIN: A fundamental frequency estimator using probabilistic threshold distributions,” in Proceedings of ICASSP, 2014.
[2] Rachel M Bittner et al. “Medleydb: A multitrack dataset for annotation-intensive mir research,” in Proceedings of ISMIR, 2014.
[3] Colin Raffel et al. “mir_eval: A transparent implementation of common mir metrics,” in Proceedings of ISMIR, 2014.

5/11

Results: Pitch and Chroma Accuracy

Dataset Metric CREPE pYIN SWIPE

RWC-synth
RPA 0.999 ± 0.002 0.990 ± 0.006 0.963 ± 0.023
RCA 0.999 ± 0.002 0.990 ± 0.006 0.966 ± 0.020

MDB-stem-synth
RPA 0.967 ± 0.091 0.919 ± 0.129 0.925 ± 0.116
RCA 0.970 ± 0.084 0.936 ± 0.092 0.936 ± 0.100

Dataset Threshold CREPE pYIN SWIPE

RWC-synth
50 cents 0.999 ± 0.002 0.990 ± 0.006 0.963 ± 0.023
25 cents 0.999 ± 0.003 0.972 ± 0.012 0.949 ± 0.026
10 cents 0.995 ± 0.004 0.908 ± 0.032 0.833 ± 0.055

MDB-stem-synth
50 cents 0.967 ± 0.091 0.919 ± 0.129 0.925 ± 0.116
25 cents 0.953 ± 0.103 0.890 ± 0.134 0.897 ± 0.127
10 cents 0.909 ± 0.126 0.826 ± 0.150 0.816 ± 0.165 6/11

Results: Noise Robustness

40 30 20 10 5 0
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

R
aw

 P
itc

h
Ac

cu
ra

cy
 a

t 5
0

C
en

ts Pub Noise

CREPE
pYIN
SWIPE

40 30 20 10 5 0
SNR (dB)

White Noise

40 30 20 10 5 0
SNR (dB)

Pink Noise

40 30 20 10 5 0
SNR (dB)

Brown Noise

• Evaluated on degraded audio using Audio Degradation Toolbox[1] (ADT)
• CREPE performs well under various types of additive noise

– except brown noise, for which pYIN performed better

[1] Matthias Mauch and Sebastian Ewert, “The audio degradation toolbox and its application to robustness evaluation,” in Proceedings of ISMIR, 2013.

7/11

Results: First-Layer Filters

RWC-Synth: First Layer Filters0

1

2

3

4

Fr
eq

ue
nc

y
(k

Hz
)

MedleyDB-Synth: First Layer Filters0

1

2

3

4

Fr
eq

ue
nc

y
(k

Hz
)

• The first-layer filters adapts to the
timbre and the pitch distribution of
the training dataset.

• When trained on a dataset with
highly homogeneous timbre,
the weights learn to differentiate
the harmonics, rather than the F0.

8/11

On the Generalizability of the Model

tu
ba

el
ec

tri
c

ba
ss

do
ub

le
 b

as
s

ce
llo

ba
rit

on
e

sa
x.

m
al

e
ra

pp
er

ba
ss

 c
la

rin
et

ba
ss

oo
n

tro
m

bo
ne

fre
nc

h
ho

rn
m

al
e

sin
ge

r
te

no
r s

ax
.

fe
m

al
e

sin
ge

r
vi

ol
a

pi
cc

ol
o

tru
m

pe
t

al
to

 sa
x.

er
hu

so
pr

an
o

sa
x.

cla
rin

et
vi

ol
in

ba
m

bo
o

flu
te

ob
oe

flu
te di
zi

0

200

400

600

800

1000

Av
er

ag
e

Fr
eq

ue
nc

y
of

 T
ra

ck
 (H

z)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
w

Pi
tc

h
Ac

cu
ra

cy

• Pitch accuracies are correlated with
the instruments and their frequency (→)

• Like any data-driven models, it only
learns what it saw during training.

• Despite the artist-conditional splits,
a model trained on one dataset doesn’t
tend to perform as well on other datasets.

• To make a general-purpose pitch estimator,
it needs to be trained on a variety of datasets.

9/11

Try It!

• Python tool for running a pre-trained model: https://github.com/marl/crepe/
– To install and run:

$ pip install crepe # installs the CREPE package
$ crepe track.wav # run pitch estimation on track.wav

• The script above produces:
– a CSV file with estimated pitch and voicing confidence
– a salience plot in a PNG file, and optionally as a Numpy format

• Trained on 6 different datasets to ensure generalizability

• An interactive demo: https://marl.github.io/crepe/

10/11

https://github.com/marl/crepe/
https://marl.github.io/crepe/

Conclusions and Future Work

• Presented a data-driven neural network model as a state of the art method
– Runs directly on time-domain audio signal
– Robust with heterogeneous timbre and additive noise
– Stays highly accurate, even with 10 cents threshold

• Possible extensions to the model:
– Temporal tracking of pitch curves
– Data augmentation with:

» pitch/phase shifts
» various kinds of additive noise

– Learnable pre-processing filter

11/11

